Efficient Emptiness Check for Timed Büchi Automata

F. Herbreteau, <u>B. Srivathsan</u> and I. Walukiewicz

Université de Bordeaux, LaBRI - CNRS

August 2010

Finite words

Finite automata

Finite automata

Clocks: can be

- compared with integers, diagonal-free constraints
- reset to 0

Run: infinite sequence of transitions

$$(s_0, \overbrace{0}^{x}, \overbrace{0}^{y}) \xrightarrow{0.4,a} (s_1, 0.4, 0) \xrightarrow{0.5,c} (s_3, 0.9, 0.5) \xrightarrow{0.3,d} (s_3, 1.2, 0.8) \xrightarrow{15,d} \cdots$$

accepting if infinitely often green

• **non-Zeno** if time diverges $(\sum_{i>0} \delta_i \to \infty)$

Model-Checking Real-Time Systems

Correctness: Safety + Liveness + Fairness

"Infinitely often, the gate is open for at least 5 s."

Realistic counter-examples: infinite non-Zeno runs

The Problem That We Consider

Given a TBA *A*, does it **have** a **non-Zeno** accepting run?

Theorem [AD94]

Deciding if a TBA has a non-Zeno accepting run is **PSPACE**-**complete**

Regions [AD94]

- 6 Corner points,
 e.g [(0,1)]
- 14 Open line segments,
 e.g [0 < x = y < 1]
- 8 Open regions,
 e.g [0 < x < y < 1]

 Region: set of valuations that satisfy the same guards w.r.t. time

 $\mathcal{O}(|X|!.M^{|X|})$ many regions!

 Region: set of valuations that satisfy the same guards w.r.t. time

 $\mathcal{O}(|X|!.M^{|X|})$ many regions!

 Region: set of valuations that satisfy the same guards w.r.t. time

 $\mathcal{O}(|X|!.M^{|X|})$ many regions!

 Region: set of valuations that satisfy the same guards w.r.t. time

 $\mathcal{O}(|X|!.M^{|X|})$ many regions!

 Region: set of valuations that satisfy the same guards w.r.t. time

 $\mathcal{O}(|X|!.M^{|X|})$ many regions!

 Region: set of valuations that satisfy the same guards w.r.t. time

 $\mathcal{O}(|X|!.M^{|X|})$ many regions!

 Region: set of valuations that satisfy the same guards w.r.t. time

 $\mathcal{O}(|X|!.M^{|X|})$ many regions!

 Region: set of valuations that satisfy the same guards w.r.t. time

 $\mathcal{O}(|X|!.M^{|X|})$ many regions!

 Region: set of valuations that satisfy the same guards w.r.t. time

 $\mathcal{O}(|X|!.M^{|X|})$ many regions!

Zone: convex union of regions

Finite accepting conditions [AD94, Bou04]

Both regions and zones preserve state reachability

 Region: set of valuations that satisfy the same guards w.r.t. time

 $\mathcal{O}(|X|!.M^{|X|})$ many regions!

Zone: convex union of regions

Büchi accepting conditions [AD94, Tri09]

Both regions and zones preserve repeated state reachability

 Region: set of valuations that satisfy the same guards w.r.t. time

 $\mathcal{O}(|X|!.M^{|X|})$ many regions!

Zone: convex union of regions

non-Zenoness

- Region: an extra time progress criterion on paths [AD94]
- Zone: ???

Time Progress in the Zone Graph

Time Progress Criterion [AD94]

$$\bigwedge_{x \in X} \mathsf{unbounded}(x) \lor \mathsf{fluctuating}(x)$$

• Path in RG(A):

$$(s_1, 0 = x < y) \qquad (s_2, 0 = y < x)$$

$$(s_0, 0 = x = y) \rightarrow (s_1, 0 = x = y) \rightarrow (s_0, 0 = x = y) \rightarrow (s_2, 0 = y = x) \rightarrow$$

▶ Path in ZG(A):

$$(s_0, 0 = x = y) \rightarrow (s_1, 0 = x \le y) \rightarrow (s_0, 0 = x = y) \rightarrow (s_2, 0 = y \le x) \rightarrow$$

The **time progress** criterion is **not sound** on ZG(A)

Standard Reduction: Combinatorial Explosion

A New Construction

Conclusion

Outline

Standard Reduction: Combinatorial Explosion

A New Construction

Conclusion

From TBA to Strongly non-Zeno TBA [TYB05]

Key Idea : reduce non-Zenoness to Büchi acceptation

Α

Strongly non-Zeno TBA [Tri99, TYB05]

Definition

Strongly non-Zeno TBA: all accepting runs are non-Zeno

Theorem [TYB05]

For every TBA A, there exists a Strongly non-Zeno TBA A' that has an **accepting** run iff A has a **non-Zeno accepting** run

(size of A': |X| + 1 clocks and at most 2|Q| states)

Theorem [Tri09]

A has a non-Zeno accepting run iff ZG(A') has an accepting run

Coming Next on Strongly non-Zeno Construction

Adding one clock leads to an **exponential blowup** in the Zone Graph!

Guard $t \ge 1$ Allows to Count...

Run of **V**: 2 different zones in s_0

$$\begin{array}{ll} \cdots (s_0, y \leq x_1 \leq x_2) & \xrightarrow{y \leq d} (s_1, y \leq x_1 \leq x_2 \,\&\, y \leq d) \xrightarrow{x_1:=0} \\ (s_0, 0 = x_1 \leq y \leq x_2) & \xrightarrow{y \leq d} (s_1, x_1 \leq y \leq x_2 \,\&\, y \leq d) \xrightarrow{x_1:=0} \\ (s_0, 0 = x_1 \leq y \leq x_2) & \cdots \end{array}$$

Guard $t \ge 1$ Allows to Count...

Run of **V**': d + 2 different zones in s_0

$$\begin{array}{ll} \cdots (\mathbf{s}_{0}, y \leq x_{1} \leq x_{2} \leq t) & \underbrace{(y \leq d)\&(t \geq 1), t := 0}_{(y \leq d)\&(t \geq 1), t := 0} \rightarrow \underbrace{x_{1} := 0}_{(y \leq d)\&(t \geq 1), t := 0} \rightarrow \underbrace{(y \leq d)\&(t \geq 1), t := 0}_{(y \leq d)\&(t \geq 1), t := 0} \rightarrow \underbrace{x_{1} := 0}_{(y \leq d)\&(t \geq 1), t := 0} \rightarrow \underbrace{x_{1} := 0}_{(y \leq d)\&(t \geq 1), t := 0} \rightarrow \underbrace{x_{1} := 0}_{(y \leq d)\&(t \geq 1), t := 0} \rightarrow \underbrace{x_{1} := 0}_{(y \leq d)\&(t \geq 1), t := 0} \rightarrow \underbrace{x_{1} := 0}_{(y \leq d)\&(t \geq 1), t := 0} \rightarrow \underbrace{x_{1} := 0}_{(y \leq d)\&(t \geq 1), t := 0} \rightarrow \underbrace{x_{1} := 0}_{(y \leq d)\&(t \geq 1), t := 0} \rightarrow \underbrace{x_{1} := 0}_{(y \leq d)\&(t \geq 1), t := 0} \rightarrow \underbrace{x_{1} := 0}_{(y \leq d)\&(t \geq 1), t := 0} \rightarrow \underbrace{x_{1} := 0}_{(y \leq d)\&(t \geq 1), t := 0} \rightarrow \underbrace{x_{1} := 0}_{(y \leq d)\&(t \geq 1), t := 0} \rightarrow \underbrace{x_{1} := 0}_{(y \leq d)\&(t \geq 1), t := 0} \rightarrow \underbrace{x_{1} := 0}_{(y \leq d)\&(t \geq 1), t := 0} \rightarrow \underbrace{x_{1} := 0}_{(y \leq d)\&(t \geq 1), t := 0} \rightarrow \underbrace{x_{1} := 0}_{(y \leq d)\&(t \geq 1), t := 0} \rightarrow \underbrace{x_{1} := 0}_{(y \leq d)\&(t \geq 1), t := 0} \rightarrow \underbrace{x_{1} := 0}_{(y \leq d)\&(t \geq 1), t := 0} \rightarrow \underbrace{x_{1} := 0}_{(y \leq d)\&(t \geq 1), t := 0} \rightarrow \underbrace{x_{1} := 0}_{(y \leq d)\&(t \geq 1), t := 0} \rightarrow \underbrace{x_{1} := 0}_{(y \leq d)\&(t \geq 1), t := 0} \rightarrow \underbrace{x_{1} := 0}_{(y \leq d)\&(t \geq 1), t := 0} \rightarrow \underbrace{x_{1} := 0}_{(y \leq d)\&(t \geq 1), t := 0} \rightarrow \underbrace{x_{1} := 0}_{(y \leq d)\&(t \geq 1), t := 0} \rightarrow \underbrace{x_{1} := 0}_{(y \leq d)\&(t \geq 1), t := 0} \rightarrow \underbrace{x_{1} := 0}_{(y \leq d)\&(t \geq 1), t := 0} \rightarrow \underbrace{x_{1} := 0}_{(y \leq d)\&(t \geq 1), t := 0} \rightarrow \underbrace{x_{1} := 0}_{(y \leq d)\&(t \geq 1), t := 0} \rightarrow \underbrace{x_{1} := 0}_{(y \leq d)\&(t \geq 1), t := 0} \rightarrow \underbrace{x_{1} := 0}_{(y \leq d)\&(t \geq 1), t := 0} \rightarrow \underbrace{x_{1} := 0}_{(y \leq d)\&(t \geq 1), t := 0} \rightarrow \underbrace{x_{1} := 0}_{(y \leq d)\&(t \geq 1), t := 0} \rightarrow \underbrace{x_{1} := 0}_{(y \leq d)\&(t \geq 1), t := 0} \rightarrow \underbrace{x_{1} := 0}_{(y \leq d)\&(t \geq 1), t := 0} \rightarrow \underbrace{x_{1} := 0}_{(y \leq d)\&(t \geq 1), t := 0} \rightarrow \underbrace{x_{1} := 0}_{(y \leq d)\bigotimes(t \geq 1), t := 0} \rightarrow \underbrace{x_{1} := 0}_{(y \in d)\bigotimes(t \geq 1), t := 0} \rightarrow \underbrace{x_{1} := 0}_{(y \in d)\bigotimes(t \geq 1), t := 0} \rightarrow \underbrace{x_{1} := 0}_{(y \in d)\bigotimes(t \geq 1), t := 0} \rightarrow \underbrace{x_{1} := 0}_{(y \in d)\bigotimes(t \geq 1), t := 0} \rightarrow \underbrace{x_{1} := 0}_{(y \in d)\bigotimes(t \geq 1), t := 0} \rightarrow \underbrace{x_{1} := 0}_{(y \in d)\bigotimes(t \geq 1), t := 0} \rightarrow \underbrace{x_{1} := 0}_{(y \in d)\bigotimes(t \geq 1), t := 0} \rightarrow \underbrace{x_{1} := 0}_{(y \in d)\bigotimes(t \geq 1), t := 0} \rightarrow \underbrace{x_{1} := 0}_{(y \in d)\bigotimes(t \geq 1), t := 0} \rightarrow$$

Remark: $y - t \ge c$ implies $x_2 - x_1 \ge c$

...and Leads to a Combinatorial Explosion

Key Idea: at V_k only two possible zones that **collapse** to the same zone after R_{k-1} .

...and Leads to a Combinatorial Explosion

$$\mathbf{A}'_{\mathbf{n}} \quad R_{n} \longrightarrow V'_{n} \longrightarrow R_{n-1} \longrightarrow V'_{n-1} \longrightarrow \cdots \longrightarrow R_{2} \longrightarrow V'_{2}$$

Lemma

 $ZG(A'_n)$ has size exponential in n

Key Idea: at
$$V'_k$$
, $\bigwedge_{i \in [k;n]} x_i - x_{i-1} \ge c_i$ with $c_i \in [0; d]$

Outline

Standard Reduction: Combinatorial Explosion

A New Construction

Conclusion

Our Approach

Remark: from the time progress criterion in [AD94]:

$$\bigwedge_{x\in X} \mathsf{unbounded}(x) \lor \mathsf{fluctuating}(x)$$

- A run is **Zeno** iff:
 - 1. some $x \in X$ is **blocking**, i.e. bounded and never reset
 - 2. or time cannot elapse: $\cdots \bullet \xrightarrow{x:=0} \bullet \to \bullet \xrightarrow{(x=0)} \bullet \cdots$
- ► Ideas:
 - constraining all accepting runs to be non-Zeno is expensive: only one of them is required
 - ▶ from (1) and (2), define conditions on SCC in ZG(A)

Coming Next: A New Algorithm

What we saw:

- ▶ $ZG(A_n)$ has size O(n)
- $ZG(A'_n)$ has size $\mathcal{O}(2^n)$

What we propose:

A $|ZG(A_n)|.O(n^2)$ algorithm

The Case of Zero Checks

All states are in the scope of a zero check!

$$\underbrace{(s_1)}_{(y=0)} \underbrace{(x=0)}_{y:=0} \underbrace{(s_2)}_{y:=0} \underbrace{(s_2)}_{y:=0} s_0 \xrightarrow{x:=0} s_1 \xrightarrow{(y=0)} s_0 \xrightarrow{(x=0)} s_2 \xrightarrow{y:=0} s_0$$

State s₂ is clear: all zero-checks are preceded by resets!

Given an SCC of ZG(A) does there exist a **clear node** ?

The Case of Zero Checks

Idea: extend nodes in ZG(A) with a set of clocks that we **guess** will be **checked for** 0

For each node in ZG(A), $2^{|X|}$ extended nodes!

Lemma

In every reachable node (q, Z) in ZG(A), clocks are **totally** ordered

Corollary

For every **reachable** (q, Z), it is **sufficient** to consider only $|\mathbf{X}| + \mathbf{1}$ guess sets

$$z_2:(s_1,0=x\leq y),\emptyset \qquad \qquad z_2,\{x\} \qquad \qquad z_2,\{x,y\}$$

$$z_1:(s_0,0=x=y),\emptyset$$

$$z_1, \{x, y\}$$

$$\overline{z_3:(s_2,0=y\leq x),\emptyset} \qquad \overline{z_3,\{y\}} \qquad \overline{z_3,\{x,y\}}$$

Efficient Emptiness Check for Timed Büchi Automata - 19/24

A Global Algorithm

Lemma

A TBA A has a non-Zeno accepting run iff GZG(A) has an **SCC** that:

- contains an accepting node and,
- contains a **clear node** (q, Z, \emptyset) and,
- has no blocking clock.

Theorem

The existence of such an SCC can be decided in time $|ZG(A)|.O(|X|^2)$

► A |GZG(A)|.O(|X|) algorithm over graph GZG(A) of size |ZG(A)|.O(|X|)

Outline

Standard Reduction: Combinatorial Explosion

A New Construction

Conclusion

Benchmarks

A	ZG(A)	ZG(A')		GZG(A)		
	size	size	otf	size	otf	opt
Train-Gate2 (mutex)	134	194	194	400	400	134
Train-Gate2 (bound. resp.)	988	227482	352	3840	1137	292
Train-Gate2 (liveness)	100	217	35	298	53	33
Fischer3 (mutex)	1837	3859	3859	7292	7292	1837
Fischer4 (mutex)	46129	96913	96913	229058	229058	46129
Fischer3 (liveness)	1315	4962	52	5222	64	40
Fischer4 (liveness)	33577	147167	223	166778	331	207
FDDI3 (liveness)	508	1305	44	3654	79	42
FDDI5 (liveness)	6006	15030	90	67819	169	88
FDDI3 (bound. resp.)	6252	41746	59	52242	114	60
CSMA/CD4 (collision)	4253	7588	7588	20146	20146	4253
CSMA/CD5 (collision)	45527	80776	80776	260026	260026	45527
CSMA/CD4 (liveness)	3038	9576	1480	14388	3075	832
CSMA/CD5 (liveness)	32751	120166	8437	186744	21038	4841

- Combinatorial explosion may occur
- ▶ **Optimized** use of GZG(A) (to appear at ATVA 2010)

Conclusions & Perspectives

- Combinatorial explosion occurs due to the strongly non-Zeno constructions from [AM04, TYB05]
- ► A |ZG(A)|. $O(|X|^2)$ algorithm for TBA emptiness that:
 - encodes fluctuating condition as a Büchi condition
 - and disables transitions with blocking clocks

 Application to the computation of non-Zeno strategies for Timed Games

Bibliography

R. Alur and D.L. Dill.

A theory of timed automata.

Theoretical Computer Science, 126(2):183-235, 1994.

R. Alur and P. Madhusudan.

Decision problems for timed automata: A survey. In SFM-RT'04, volume 3185 of LNCS, pages 1-24, 2004.

H. Bowman and R. Gómez.

How to stop time stopping. Formal Asp. Comput., 18(4):459–493, 2006.

P. Bouyer.

Forward analysis of updatable timed automata. Formal Methods in System Design, 24(3):281–320, 2004.

R. Gómez and H. Bowman.

Efficient detection of zeno runs in timed automata.

In Proc. 5th Int. Conf. on Formal Modeling and Analysis of Timed Systems, FORMATS 2007, volume 4763 of LNCS, pages 195–210, 2007.

S. Tripakis.

Verifying progress in timed systems.

In Proc. 5th Int. AMAST Workshop, ARTS'99, volume 1601 of LNCS, pages 299–314. Springer, 1999.

S. Tripakis

Checking timed büchi emptiness on simulation graphs. ACM Transactions on Computational Logic, 10(3):??-??, 2009.

S. Tripakis, S. Yovine, and A. Bouajjani.

Checking timed büchi automata emptiness efficiently. Formal Methods in System Design, 26(3):267–292, 2005.