
Efficient Emptiness Check for Timed Büchi

Automata

F. Herbreteau, B. Srivathsan and I. Walukiewicz

Université de Bordeaux, LaBRI - CNRS

August 2010

Efficient Emptiness Check for Timed Büchi Automata - 1/24

Timed Büchi Automata [AD94]

Finite words

Lfinite = a∗

a

Finite automata

Infinite words

Linfinite = aω

a

Büchi automata

Timed words

Lt = (a, 1)(a, 2) . . .

(x = 1), a, x := 0

Timed automata

Clocks: can be

I compared with integers, diagonal-free constraints

I reset to 0

Efficient Emptiness Check for Timed Büchi Automata - 2/24

Timed Büchi Automata [AD94]

Finite words

Lfinite = a∗

a

Finite automata

Infinite words

Linfinite = aω

a

Büchi automata

Timed words

Lt = (a, 1)(a, 2) . . .

(x = 1), a, x := 0

Timed automata

Clocks: can be

I compared with integers, diagonal-free constraints

I reset to 0

Efficient Emptiness Check for Timed Büchi Automata - 2/24

Timed Büchi Automata [AD94]

Finite words

Lfinite = a∗

a

Finite automata

Infinite words

Linfinite = aω

a

Büchi automata

Timed words

Lt = (a, 1)(a, 2) . . .

(x = 1), a, x := 0

Timed automata

Clocks: can be

I compared with integers, diagonal-free constraints

I reset to 0

Efficient Emptiness Check for Timed Büchi Automata - 2/24

Timed Büchi Automata [AD94]

Finite words

Lfinite = a∗

a

Finite automata

Infinite words

Linfinite = aω

a

Büchi automata

Timed words

Lt = (a, 1)(a, 2) . . .

(x = 1), a, x := 0

Timed automata

Clocks: can be

I compared with integers, diagonal-free constraints

I reset to 0

Efficient Emptiness Check for Timed Büchi Automata - 2/24

Timed Büchi Automata [AD94]

Run: infinite sequence of transitions

(s0,

x︷︸︸︷
0 ,

y︷︸︸︷
0)

0.4,a−−−→ (s1, 0.4, 0)
0.5,c−−−→ (s3, 0.9, 0.5)

0.3,d−−−→ (s3, 1.2, 0.8)
15,d−−→ · · ·

I accepting if infinitely often green

I non-Zeno if time diverges (
∑

i≥0 δi →∞)

Efficient Emptiness Check for Timed Büchi Automata - 3/24

Model-Checking Real-Time Systems

Correctness: Safety + Liveness + Fairness

¬open
open, x := 0

(x < 5), close

“Infinitely often, the gate is open for at least 5 s.”

Realistic counter-examples: infinite non-Zeno runs
Efficient Emptiness Check for Timed Büchi Automata - 4/24

The Problem That We Consider

Given a TBA A, does it have a non-Zeno
accepting run?

Theorem [AD94]

Deciding if a TBA has a non-Zeno accepting run is PSPACE-
complete

Efficient Emptiness Check for Timed Büchi Automata - 5/24

Regions [AD94]

y

x

I 6 Corner points,
e.g [(0, 1)]

I 14 Open line segments,
e.g [0 < x = y < 1]

I 8 Open regions,
e.g [0 < x < y < 1]

I Region: set of valuations
that satisfy the same
guards w.r.t. time

Efficient Emptiness Check for Timed Büchi Automata - 6/24

Region Graph

[0] [1] [2] [3] [4]

I Region: set of valuations
that satisfy the same
guards w.r.t. time

Efficient Emptiness Check for Timed Büchi Automata - 6/24

Region Graph

[0] [1] [2] [3] [4]

I Region: set of valuations
that satisfy the same
guards w.r.t. time

Efficient Emptiness Check for Timed Büchi Automata - 6/24

Region Graph

[0] [1] [2] [3] [4]

I Region: set of valuations
that satisfy the same
guards w.r.t. time

Efficient Emptiness Check for Timed Büchi Automata - 6/24

Region Graph

[0] [1] [2] [3] [4]

I Region: set of valuations
that satisfy the same
guards w.r.t. time

O(|X |!.M |X |) many regions!

Efficient Emptiness Check for Timed Büchi Automata - 6/24

Region Graph

[0] [1] [2] [3] [4]

I Region: set of valuations
that satisfy the same
guards w.r.t. time

O(|X |!.M |X |) many regions!

I Zone: convex union of
regions

Efficient Emptiness Check for Timed Büchi Automata - 6/24

Region Graph & Zone Graph

[0] [1] [2] [3] [4]

I Region: set of valuations
that satisfy the same
guards w.r.t. time

O(|X |!.M |X |) many regions!

I Zone: convex union of
regions

Efficient Emptiness Check for Timed Büchi Automata - 6/24

Region Graph & Zone Graph

[0] [1] [2] [3] [4]

I Region: set of valuations
that satisfy the same
guards w.r.t. time

O(|X |!.M |X |) many regions!

I Zone: convex union of
regions

Efficient Emptiness Check for Timed Büchi Automata - 6/24

Region Graph & Zone Graph

[0] [1] [2] [3] [4]

I Region: set of valuations
that satisfy the same
guards w.r.t. time

O(|X |!.M |X |) many regions!

I Zone: convex union of
regions

Efficient Emptiness Check for Timed Büchi Automata - 6/24

Region Graph & Zone Graph

[0] [1] [2] [3] [4]

I Region: set of valuations
that satisfy the same
guards w.r.t. time

O(|X |!.M |X |) many regions!

I Zone: convex union of
regions

Efficient Emptiness Check for Timed Büchi Automata - 6/24

Region Graph & Zone Graph

[0] [1] [2] [3] [4]

I Region: set of valuations
that satisfy the same
guards w.r.t. time

O(|X |!.M |X |) many regions!

I Zone: convex union of
regions

Efficient Emptiness Check for Timed Büchi Automata - 6/24

Region Graph & Zone Graph

[0] [1] [2] [3] [4]

I Region: set of valuations
that satisfy the same
guards w.r.t. time

O(|X |!.M |X |) many regions!

I Zone: convex union of
regions

Efficient Emptiness Check for Timed Büchi Automata - 6/24

Region Graph & Zone Graph

[0] [1] [2] [3] [4]

I Region: set of valuations
that satisfy the same
guards w.r.t. time

O(|X |!.M |X |) many regions!

I Zone: convex union of
regions

Finite accepting conditions [AD94, Bou04]

Both regions and zones preserve state reachability

Efficient Emptiness Check for Timed Büchi Automata - 6/24

Region Graph & Zone Graph

[0] [1] [2] [3] [4]

I Region: set of valuations
that satisfy the same
guards w.r.t. time

O(|X |!.M |X |) many regions!

I Zone: convex union of
regions

Büchi accepting conditions [AD94, Tri09]

Both regions and zones preserve repeated state reachability

Efficient Emptiness Check for Timed Büchi Automata - 6/24

Region Graph & Zone Graph

[0] [1] [2] [3] [4]

I Region: set of valuations
that satisfy the same
guards w.r.t. time

O(|X |!.M |X |) many regions!

I Zone: convex union of
regions

non-Zenoness
I Region: an extra time progress criterion on

paths [AD94]

I Zone: ???

Efficient Emptiness Check for Timed Büchi Automata - 6/24

Time Progress in the Zone Graph

Time Progress Criterion [AD94]

∧
x∈X

unbounded(x) ∨ fluctuating(x)
s0s1 s2

x := 0 y := 0

(y = 0) (x = 0)

I Path in RG(A):

(s0, 0 = x = y) (s1, 0 = x = y)

(s1, 0 = x < y)

(s0, 0 = x = y) (s2, 0 = y = x)

(s2, 0 = y < x)

I Path in ZG(A):

(s0, 0 = x = y) (s1, 0 = x ≤ y) (s0, 0 = x = y) (s2, 0 = y ≤ x)

The time progress criterion is not sound on ZG(A)

Efficient Emptiness Check for Timed Büchi Automata - 7/24

Outline

Standard Reduction: Combinatorial Explosion

A New Construction

Conclusion

Efficient Emptiness Check for Timed Büchi Automata - 8/24

Outline

Standard Reduction: Combinatorial Explosion

A New Construction

Conclusion

Efficient Emptiness Check for Timed Büchi Automata - 9/24

From TBA to Strongly non-Zeno TBA [TYB05]

Key Idea : reduce non-Zenoness to Büchi acceptation

.

.

≥ 1 ≥ 1

.

.

.

g
1 ; R

1

g 2
; R 2

A

.

.

.

g
1 & (t ≥

1)R
1 ; t :=

0

g1 ; R
1

g2
& (t
≥ 1)

R2
; t :=

0

g2; R2

A′

Efficient Emptiness Check for Timed Büchi Automata - 10/24

Strongly non-Zeno TBA [Tri99, TYB05]

Definition

Strongly non-Zeno TBA: all accepting runs are non-Zeno

Theorem [TYB05]

For every TBA A, there exists a Strongly non-Zeno TBA A′ that
has an accepting run iff A has a non-Zeno accepting run

(size of A′: |X |+ 1 clocks and at most 2|Q| states)

Theorem [Tri09]

A has a non-Zeno accepting run iff ZG(A′) has an accepting run

Efficient Emptiness Check for Timed Büchi Automata - 11/24

Coming Next on Strongly non-Zeno Construction

Adding one clock leads to an exponential blowup
in the Zone Graph!

Efficient Emptiness Check for Timed Büchi Automata - 12/24

Guard t ≥ 1 Allows to Count...

s0

s1

(y ≤ d) x1 := 0

V

s0

s1 s′1

(y ≤ d)&(t ≥ 1)
t := 0

(y ≤ d)

x1 := 0

V’

Run of V: 2 different zones in s0

· · · (s0, y ≤ x1 ≤ x2)
y≤d−−−→ (s1, y ≤ x1 ≤ x2 & y ≤ d)

x1:=0−−−→

(s0, 0 = x1 ≤ y ≤ x2)
y≤d−−−→ (s1, x1 ≤ y ≤ x2 & y ≤ d)

x1:=0−−−→
(s0, 0 = x1 ≤ y ≤ x2) · · ·

Efficient Emptiness Check for Timed Büchi Automata - 13/24

Guard t ≥ 1 Allows to Count...

s0

s1

(y ≤ d) x1 := 0

V

s0

s1 s′1

(y ≤ d)&(t ≥ 1)
t := 0

(y ≤ d)

x1 := 0

V’

Run of V’: d + 2 different zones in s0

· · · (s0, y ≤ x1 ≤ x2 ≤ t)
(y≤d)&(t≥1), t:=0−−−−−−−−−−−−→→ x1:=0−−−→

(s0, 0 = x1 ≤ t ≤ y ≤ x2&y − t ≥ 0)
(y≤d)&(t≥1), t:=0−−−−−−−−−−−−→→ x1:=0−−−→

(s0, 0 = x1 ≤ t ≤ y ≤ x2&y − t ≥ 1)
(y≤d)&(t≥1), t:=0−−−−−−−−−−−−→→ x1:=0−−−→

(s0, 0 = x1 ≤ t ≤ y ≤ x2&y − t ≥ 2)
(y≤d)&(t≥1), t:=0−−−−−−−−−−−−→→ x1:=0−−−→

. . .

(s0, 0 = x1 ≤ t ≤ y ≤ x2&y − t ≥ d)

Remark: y − t ≥ c implies x2 − x1 ≥ c

Efficient Emptiness Check for Timed Büchi Automata - 13/24

...and Leads to a Combinatorial Explosion

(y ≤ d)
x1 := 0
. . .

xk−1 := 0

Vk

. . .
xk := 0 x1 := 0 y := 0

Rk

Rn Vn Rn−1 Vn−1 · · · R2 V2An

Lemma

ZG(An) has linear size in n

Key Idea: at Vk only two possible zones that collapse to the
same zone after Rk−1.

Efficient Emptiness Check for Timed Büchi Automata - 14/24

...and Leads to a Combinatorial Explosion

(y ≤ d)&(t ≥ 1)
t := 0

(y ≤ d) x1 := 0
. . .

xk−1 := 0

V′k

. . .
xk := 0 x1 := 0 y := 0

Rk

Rn V ′n Rn−1 V ′n−1 · · · R2 V ′2A′n

Lemma

ZG(A′n) has size exponential in n

Key Idea: at V ′k ,
∧

i∈[k;n] xi − xi−1 ≥ ci with ci ∈ [0; d]

Efficient Emptiness Check for Timed Büchi Automata - 14/24

Outline

Standard Reduction: Combinatorial Explosion

A New Construction

Conclusion

Efficient Emptiness Check for Timed Büchi Automata - 15/24

Our Approach

I Remark: from the time progress criterion in [AD94]:∧
x∈X

unbounded(x) ∨ fluctuating(x)

A run is Zeno iff:

1. some x ∈ X is blocking, i.e. bounded and never reset

2. or time cannot elapse: · · · • x :=0−−−→ • → • (x=0)−−−→ • · · ·

I Ideas:
I constraining all accepting runs to be non-Zeno is

expensive: only one of them is required

I from (1) and (2), define conditions on SCC in ZG(A)

Efficient Emptiness Check for Timed Büchi Automata - 16/24

Coming Next: A New Algorithm

What we saw:

I ZG(An) has size O(n)

I ZG(A′n) has size O(2n)

What we propose:

A |ZG(An)|.O(n2) algorithm

Efficient Emptiness Check for Timed Büchi Automata - 17/24

The Case of Blocking Clocks (no x = 0)

s0s1

s2 s3

(x ≤ 1), y := 0

(y ≤ 1)
z := 0

(z ≤ 1)

Efficient Emptiness Check for Timed Büchi Automata - 18/24

The Case of Blocking Clocks (no x = 0)

s0s1

s2 s3

(x ≤ 1), y := 0

(y ≤ 1)
z := 0

(z ≤ 1)

Efficient Emptiness Check for Timed Büchi Automata - 18/24

The Case of Blocking Clocks (no x = 0)

s0s1

s2 s3

(x ≤ 1), y := 0

(y ≤ 1)
z := 0

(z ≤ 1)

Efficient Emptiness Check for Timed Büchi Automata - 18/24

The Case of Blocking Clocks (no x = 0)

s0s1

s2 s3

(x ≤ 1), y := 0

(y ≤ 1)
z := 0

(z ≤ 1)

Efficient Emptiness Check for Timed Büchi Automata - 18/24

The Case of Blocking Clocks (no x = 0)

s0s1

s2 s3

(x ≤ 1), y := 0

(y ≤ 1)
z := 0

(z ≤ 1)

Efficient Emptiness Check for Timed Büchi Automata - 18/24

The Case of Zero Checks

s0s1 s2

x := 0 y := 0

(y = 0) (x = 0)
s0

x :=0−−→ s1
(y=0)−−−→ s0

y :=0−−→ s2
(x=0)−−−→ s0

All states are in the scope of a zero check!

s0s1 s2

x := 0 (x = 0)

(y = 0) y := 0
s0

x :=0−−→ s1
(y=0)−−−→ s0

(x=0)−−−→ s2
y :=0−−→ s0

State s2 is clear: all zero-checks are preceded by resets!

Given an SCC of ZG(A) does there exist a clear node ?

Efficient Emptiness Check for Timed Büchi Automata - 19/24

The Case of Zero Checks

Idea: extend nodes in ZG(A) with a set of clocks that we
guess will be checked for 0

For each node in ZG(A), 2|X | extended nodes!

Lemma

In every reachable node (q,Z) in ZG(A), clocks are totally
ordered

Corollary

For every reachable (q,Z), it is sufficient to consider only
|X|+ 1 guess sets

Efficient Emptiness Check for Timed Büchi Automata - 19/24

The Case of Zero Checks (1st example)

s0s1 s2

x := 0 y := 0

(y = 0) (x = 0)

z2 : (s1, 0 = x ≤ y)

z2, {x} z2, {x , y}

z1 : (s0, 0 = x = y)

z1, {x , y}

z3 : (s2, 0 = y ≤ x)

z3, {y} z3, {x , y}

x := 0 y = 0

y := 0 x = 0

Efficient Emptiness Check for Timed Büchi Automata - 19/24

The Case of Zero Checks (1st example)

s0s1 s2

x := 0 y := 0

(y = 0) (x = 0)

z2 : (s1, 0 = x ≤ y), ∅ z2, {x} z2, {x , y}

z1 : (s0, 0 = x = y), ∅ z1, {x , y}

z3 : (s2, 0 = y ≤ x), ∅ z3, {y} z3, {x , y}

Efficient Emptiness Check for Timed Büchi Automata - 19/24

The Case of Zero Checks (1st example)

s0s1 s2

x := 0 y := 0

(y = 0) (x = 0)

z2 : (s1, 0 = x ≤ y), ∅ z2, {x} z2, {x , y}

z1 : (s0, 0 = x = y), ∅ z1, {x , y}

z3 : (s2, 0 = y ≤ x), ∅ z3, {y} z3, {x , y}

y = 0

x = 0

Efficient Emptiness Check for Timed Büchi Automata - 19/24

The Case of Zero Checks (1st example)

s0s1 s2

x := 0 y := 0

(y = 0) (x = 0)

z2 : (s1, 0 = x ≤ y), ∅ z2, {x} z2, {x , y}

z1 : (s0, 0 = x = y), ∅ z1, {x , y}

z3 : (s2, 0 = y ≤ x), ∅ z3, {y} z3, {x , y}

x := 0

y := 0

x := 0

y := 0

y = 0

x = 0

Efficient Emptiness Check for Timed Büchi Automata - 19/24

The Case of Zero Checks (1st example)

s0s1 s2

x := 0 y := 0

(y = 0) (x = 0)

z2 : (s1, 0 = x ≤ y), ∅ z2, {x} z2, {x , y}

z1 : (s0, 0 = x = y), ∅ z1, {x , y}

z3 : (s2, 0 = y ≤ x), ∅ z3, {y} z3, {x , y}

x := 0

y := 0

x := 0

y := 0

y = 0

x = 0

τ

τ

τ

τ

τ

Efficient Emptiness Check for Timed Büchi Automata - 19/24

The Case of Zero Checks (2nd example)

s0s1 s2

x := 0 (x = 0)

(y = 0) y := 0

z2 : (s2, 0 = x = y), ∅ z2, {x, y}

z3 : (s0, 0 = y ≤ x), ∅ z3, {y} z3, {x, y}

z4 : (s1, 0 = x ≤ y), ∅ z4, {x} z4, {x, y}

z1 : (s0, 0 = x = y), ∅ z1, {x, y}

x := 0

(x = 0)

x := 0

y := 0
y := 0

x := 0 x := 0

(x = 0)

x := 0

(y = 0)

τ

τ

τ

τ

τ

τ

Efficient Emptiness Check for Timed Büchi Automata - 19/24

A Global Algorithm

Lemma

A TBA A has a non-Zeno accepting run iff GZG(A) has an SCC
that:

I contains an accepting node and,

I contains a clear node (q,Z , ∅) and,

I has no blocking clock.

Theorem

The existence of such an SCC can be decided in time
|ZG(A)|.O(|X |2)

I A |GZG(A)|.O(|X |) algorithm over graph GZG(A) of size
|ZG(A)|.O(|X |)

Efficient Emptiness Check for Timed Büchi Automata - 20/24

Outline

Standard Reduction: Combinatorial Explosion

A New Construction

Conclusion

Efficient Emptiness Check for Timed Büchi Automata - 21/24

Benchmarks

A ZG(A) ZG(A′) GZG(A)
size size otf size otf opt

Train-Gate2 (mutex) 134 194 194 400 400 134
Train-Gate2 (bound. resp.) 988 227482 352 3840 1137 292
Train-Gate2 (liveness) 100 217 35 298 53 33
Fischer3 (mutex) 1837 3859 3859 7292 7292 1837
Fischer4 (mutex) 46129 96913 96913 229058 229058 46129
Fischer3 (liveness) 1315 4962 52 5222 64 40
Fischer4 (liveness) 33577 147167 223 166778 331 207
FDDI3 (liveness) 508 1305 44 3654 79 42
FDDI5 (liveness) 6006 15030 90 67819 169 88
FDDI3 (bound. resp.) 6252 41746 59 52242 114 60
CSMA/CD4 (collision) 4253 7588 7588 20146 20146 4253
CSMA/CD5 (collision) 45527 80776 80776 260026 260026 45527
CSMA/CD4 (liveness) 3038 9576 1480 14388 3075 832
CSMA/CD5 (liveness) 32751 120166 8437 186744 21038 4841

I Combinatorial explosion may occur

I Optimized use of GZG(A) (to appear at ATVA 2010)

Efficient Emptiness Check for Timed Büchi Automata - 22/24

Conclusions & Perspectives

I Combinatorial explosion occurs due to the strongly
non-Zeno constructions from [AM04, TYB05]

I A |ZG(A)|.O(|X |2) algorithm for TBA emptiness that:

I encodes fluctuating condition as a Büchi condition

I and disables transitions with blocking clocks

I Application to the computation of non-Zeno strategies
for Timed Games

Efficient Emptiness Check for Timed Büchi Automata - 23/24

Bibliography
R. Alur and D.L. Dill.

A theory of timed automata.
Theoretical Computer Science, 126(2):183–235, 1994.

R. Alur and P. Madhusudan.

Decision problems for timed automata: A survey.
In SFM-RT’04, volume 3185 of LNCS, pages 1–24, 2004.

H. Bowman and R. Gómez.

How to stop time stopping.
Formal Asp. Comput., 18(4):459–493, 2006.

P. Bouyer.

Forward analysis of updatable timed automata.
Formal Methods in System Design, 24(3):281–320, 2004.

R. Gómez and H. Bowman.

Efficient detection of zeno runs in timed automata.
In Proc. 5th Int. Conf. on Formal Modeling and Analysis of Timed Systems, FORMATS 2007, volume 4763
of LNCS, pages 195–210, 2007.

S. Tripakis.

Verifying progress in timed systems.
In Proc. 5th Int. AMAST Workshop, ARTS’99, volume 1601 of LNCS, pages 299–314. Springer, 1999.

S. Tripakis.

Checking timed büchi emptiness on simulation graphs.
ACM Transactions on Computational Logic, 10(3):??–??, 2009.

S. Tripakis, S. Yovine, and A. Bouajjani.

Checking timed büchi automata emptiness efficiently.
Formal Methods in System Design, 26(3):267–292, 2005.

Efficient Emptiness Check for Timed Büchi Automata - 24/24

	Standard Reduction: Combinatorial Explosion
	A New Construction
	Conclusion

